Quantitative Human Physiology

Author: Joseph J Feher
Publisher: Academic Press
ISBN: 0128011548
Format: PDF, ePub
Download and Read
Quantitative Human Physiology: An Introduction is the first text to meet the needs of the undergraduate bioengineering student who is being exposed to physiology for the first time, but requires a more analytical/quantitative approach. This book explores how component behavior produces system behavior in physiological systems. Through text explanation, figures, and equations, it provides the engineering student with a basic understanding of physiological principles with an emphasis on quantitative aspects. Features a quantitative approach that includes physical and chemical principles Provides a more integrated approach from first principles, integrating anatomy, molecular biology, biochemistry and physiology Includes clinical applications relevant to the biomedical engineering student (TENS, cochlear implants, blood substitutes, etc.) Integrates labs and problem sets to provide opportunities for practice and assessment throughout the course NEW FOR THE SECOND EDITION Expansion of many sections to include relevant information Addition of many new figures and re-drawing of other figures to update our understanding and clarify difficult areas Substantial updating of the text to reflect newer research results Addition of several new appendices including statistics, nomenclature of transport carriers, and structural biology of important items such as the neuromuscular junction and calcium release unit Addition of new problems within the problem sets Addition of commentary to power point presentations

Biomedical Engineering

Author: W. Mark Saltzman
Publisher: Cambridge University Press
ISBN: 9781139480567
Format: PDF, ePub, Docs
Download and Read
This is an ideal text for an introduction to biomedical engineering. The book presents the basic science knowledge used by biomedical engineers at a level accessible to all students and illustrates the first steps in applying this knowledge to solve problems in human medicine. Biomedical engineering encompasses a range of fields of specialization including bioinstrumentation, bioimaging, biomechanics, biomaterials, and biomolecular engineering. This introduction to bioengineering assembles foundational resources from molecular and cellular biology and physiology and relates them to various sub-specialties of biomedical engineering. The first two parts of the book present basic information in molecular/cellular biology and human physiology; quantitative concepts are stressed in these sections. Comprehension of these basic life science principles provides the context in which biomedical engineers interact. The third part of the book introduces sub-specialties in biomedical engineering, and emphasizes - through examples and profiles of people in the field - the types of problems biomedical engineers solve.

Knowledge Visualization and Visual Literacy in Science Education

Author: Ursyn, Anna
Publisher: IGI Global
ISBN: 1522504818
Format: PDF, Docs
Download and Read
Effective communication within learning environments is a pivotal aspect to students’ success. By enhancing abstract concepts with visual media, students can achieve a higher level of retention and better understand the presented information. Knowledge Visualization and Visual Literacy in Science Education is an authoritative reference source for the latest scholarly research on the implementation of visual images, aids, and graphics in classroom settings and focuses on how these methods stimulate critical thinking in students. Highlighting concepts relating to cognition, communication, and computing, this book is ideally designed for researchers, instructors, academicians, and students.

Introduction to Biomedical Engineering

Author: John Denis Enderle
Publisher: Academic Press
ISBN: 0123749794
Format: PDF, Docs
Download and Read
Introduction to Biomedical Engineering is a comprehensive survey text for biomedical engineering courses. It is the most widely adopted text across the BME course spectrum, valued by instructors and students alike for its authority, clarity and encyclopedic coverage in a single volume. Biomedical engineers need to understand the wide range of topics that are covered in this text, including basic mathematical modeling; anatomy and physiology; electrical engineering, signal processing and instrumentation; biomechanics; biomaterials science and tissue engineering; and medical and engineering ethics. Enderle and Bronzino tackle these core topics at a level appropriate for senior undergraduate students and graduate students who are majoring in BME, or studying it as a combined course with a related engineering, biology or life science, or medical/pre-medical course. * NEW: Each chapter in the 3rd Edition is revised and updated, with new chapters and materials on compartmental analysis, biochemical engineering, transport phenomena, physiological modeling and tissue engineering. Chapters on peripheral topics have been removed and made avaialblw online, including optics and computational cell biology. * NEW: many new worked examples within chapters * NEW: more end of chapter exercises, homework problems * NEW: Image files from the text available in PowerPoint format for adopting instructors * Readers benefit from the experience and expertise of two of the most internationally renowned BME educators * Instructors benefit from a comprehensive teaching package including a fully worked solutions manual * A complete introduction and survey of BME * NEW: new chapters on compartmental analysis, biochemical engineering, and biomedical transport phenomena * NEW: revised and updated chapters throughout the book feature current research and developments in, for example biomaterials, tissue engineering, biosensors, physiological modeling, and biosignal processing. * NEW: more worked examples and end of chapter exercises * NEW: Image files from the text available in PowerPoint format for adopting instructors * As with prior editions, this third edition provides a historical look at the major developments across biomedical domains and covers the fundamental principles underlying biomedical engineering analysis, modeling, and design *bonus chapters on the web include: Rehabilitation Engineering and Assistive Technology, Genomics and Bioinformatics, and Computational Cell Biology and Complexity.

Physiology by Numbers

Author: Richard F. Burton
Publisher: Cambridge University Press
ISBN: 9780521777032
Format: PDF
Download and Read
Explains physiological concepts through the use of simple calculations and accessible language.

Introduction to Modeling in Physiology and Medicine

Author: Claudio Cobelli
Publisher: Elsevier
ISBN: 9780080559988
Format: PDF, ePub, Mobi
Download and Read
This unified modeling textbook for students of biomedical engineering provides a complete course text on the foundations, theory and practice of modeling and simulation in physiology and medicine. It is dedicated to the needs of biomedical engineering and clinical students, supported by applied BME applications and examples. Developed for biomedical engineering and related courses: speaks to BME students at a level and in a language appropriate to their needs, with an interdisciplinary clinical/engineering approach, quantitative basis, and many applied examples to enhance learning Delivers a quantitative approach to modeling and also covers simulation: the perfect foundation text for studies across BME and medicine Extensive case studies and engineering applications from BME, plus end-of-chapter exercises

Medical Device Technologies

Author: Gail D. Baura
Publisher: Academic Press
ISBN: 012374976X
Format: PDF, ePub, Docs
Download and Read
The goal of this textbook is to provide undergraduate engineering students with an introduction to commonly manufactured medical devices. It is the first textbook that discusses both electrical and mechanical medical devices. The first 20 chapters are medical device technology chapters; the remaining 8 chapters are medical device laboratory experiment chapters. Each medical device chapter begins with an exposition of appropriate physiology, mathematical modeling or biocompatibility issues, and clinical need. A device system description and system diagram provide details on technology function and administration of diagnosis and/or therapy. The systems approach enables students to quickly identify the relationships between devices. Device key features are based on five applicable consensus standard requirements from organizations such as ISO and the Association for the Advancement of Medical Instrumentation (AAMI). Key Features: The medical devices discussed are Nobel Prize or Lasker Clinical Prize winners, vital signs devices, and devices in high industry growth areas Three significant Food and Drug Administration (FDA) recall case studies which have impacted FDA medical device regulation are included in appropriate device chapters Exercises at the end of each chapter include traditional homework problems, analysis exercises, and four questions from assigned primary literature Eight laboratory experiments are detailed that provide hands-on reinforcement of device concepts

Biomedical Information Technology

Author: David Dagan Feng
Publisher: Academic Press
ISBN: 9780080550725
Format: PDF, Mobi
Download and Read
The enormous growth in the field of biotechnology necessitates the utilization of information technology for the management, flow and organization of data. The field continues to evolve with the development of new applications to fit the needs of the biomedicine. From molecular imaging to healthcare knowledge management, the storage, access and analysis of data contributes significantly to biomedical research and practice. All biomedical professionals can benefit from a greater understanding of how data can be efficiently managed and utilized through data compression, modelling, processing, registration, visualization, communication, and large-scale biological computing. In addition Biomedical Information Technology contains practical integrated clinical applications for disease detection, diagnosis, surgery, therapy, and biomedical knowledge discovery, including the latest advances in the field, such as ubiquitous M-Health systems and molecular imaging applications. The world's most recognized authorities give their "best practices" ready for implementation Provides professionals with the most up to date and mission critical tools to evaluate the latest advances in the field and current integrated clinical applications Gives new staff the technological fundamentals and updates experienced professionals with the latest practical integrated clinical applications

Biodesign

Author: Stefanos Zenios
Publisher: Cambridge University Press
ISBN: 0521517427
Format: PDF, Kindle
Download and Read
Recognize market opportunities, master the design process, and develop business acumen with this 'how-to' guide to medical technology innovation. Outlining a systematic, proven approach for innovation - identify, invent, implement - and integrating medical, engineering, and business challenges with real-world case studies, this book provides a practical guide for students and professionals.