Plant Resource Allocation

Author: Fakhri A. Bazzaz
Publisher: Elsevier
ISBN: 0080539076
Format: PDF, Mobi
Download and Read
Plant Resource Allocation is an exploration of the latest insights into the theory and functioning of plant resource allocation. An international team of physiological ecologists has prepared chapters devoted to the fundamental topics of resource allocation. Comprehensive coverage of all aspects of resource allocation in plants All contributors are leaders in their respective fields

Reproductive Allocation in Plants

Author: Edward Reekie
Publisher: Elsevier
ISBN: 9780080454337
Format: PDF, Kindle
Download and Read
Much effort has been devoted to developing theories to explain the wide variation we observe in reproductive allocation among environments. Reproductive Allocation in Plants describes why plants differ in the proportion of their resources that they allocate to reproduction and looks into the various theories. This book examines the ecological and evolutionary explanations for variation in plant reproductive allocation from the perspective of the underlying physiological mechanisms controlling reproduction and growth. An international team of leading experts have prepared chapters summarizing the current state of the field and offering their views on the factors determining reproductive allocation in plants. This will be a valuable resource for senior undergraduate students, graduate students and researchers in ecology, plant ecophysiology, and population biology. 8 outstanding chapters dedicated to the evolution and ecology of variation in plant reproductive allocation Written by an international team of leading experts in the field Provides enough background information to make it accessible to senior undergraduate students Includes over 60 figures and 29 tables

Plant Physiological Ecology

Author: Hans Lambers
Publisher: Springer Science & Business Media
ISBN: 1475728557
Format: PDF, Docs
Download and Read
This textbook is remarkable for emphasising that the mechanisms underlying plant physiological ecology can be found at the levels of biochemistry, biophysics, molecular biology and whole-plant physiology. The authors begin with the primary processes of carbon metabolism and transport, plant-water relations, and energy balance. After considering individual leaves and whole plants, these physiological processes are then scaled up to the level of the canopy. Subsequent chapters discuss mineral nutrition and the ways in which plants cope with nutrient-deficient or toxic soils. The book then looks at patterns of growth and allocation, life-history traits, and interactions between plants and other organisms. Later chapters deal with traits that affect decomposition of plant material and with plant physiological ecology at the level of ecosystems and global environmental processes.

Resource Physiology of Conifers

Author: William Kirby Smith
Publisher: Gulf Professional Publishing
ISBN: 9780126528701
Format: PDF, ePub
Download and Read
Coniferous forests are among the most important of ecosystems. These forests are widespread and influence both the financial and biological health of our globe. This book focuses attention on conifers and how these trees acquire, allocate, and utilize the resources that sustain this crucial productivity. An international team of experts has surveyed and synthesized information from an expanding area of inquiry. The first half of the book describes how resources are acquired both by means of photosynthesis and through root systems. The latter half of the volume focuses upon how resources are stored and used. As conifers continue as a resource and ever increasingly important contributor to the regional and global environmental sustainability, this book will help establish how much sustainability can be expected and maintained.

Plant Physiological Ecology

Author: Hans Lambers
Publisher: Springer Science & Business Media
ISBN: 1475728557
Format: PDF, ePub, Docs
Download and Read
This textbook is remarkable for emphasising that the mechanisms underlying plant physiological ecology can be found at the levels of biochemistry, biophysics, molecular biology and whole-plant physiology. The authors begin with the primary processes of carbon metabolism and transport, plant-water relations, and energy balance. After considering individual leaves and whole plants, these physiological processes are then scaled up to the level of the canopy. Subsequent chapters discuss mineral nutrition and the ways in which plants cope with nutrient-deficient or toxic soils. The book then looks at patterns of growth and allocation, life-history traits, and interactions between plants and other organisms. Later chapters deal with traits that affect decomposition of plant material and with plant physiological ecology at the level of ecosystems and global environmental processes.

Physiological Ecology of North American Desert Plants

Author: Stanley D. Smith
Publisher: Springer Science & Business Media
ISBN: 3642592120
Format: PDF, Docs
Download and Read
Following a description of the physical and biological characterization of the four North American deserts together with the primary adaptations of plants to environmental stress, the authors go on to present case studies of key species. They provide an up-to-date and comprehensive review of the major patterns of adaptation in desert plants, with one chapter devoted to several important exotic plants that have invaded these deserts. The whole is rounded off with a synthesis of the resource requirements of desert plants and how they may respond to global climate change.

Growth and Defence in Plants

Author: Rainer Matyssek
Publisher: Springer Science & Business Media
ISBN: 3642306454
Format: PDF, Kindle
Download and Read
Plants use resources, i.e. carbon, nutrients, water and energy, either for growth or to defend themselves from biotic and abiotic stresses. This volume provides a timely understanding of resource allocation and its regulation in plants, linking the molecular with biochemical and physiological-level processes. Ecological scenarios covered include competitors, pathogens, herbivores, mycorrhizae, soil microorganisms, carbon dioxide/ozone regimes, nitrogen and light availabilities. The validity of the “Growth-Differentiation Balance Hypothesis” is examined and novel theoretical concepts and approaches to modelling plant resource allocation are discussed. The results presented can be applied in plant breeding and engineering, as well as in resource-efficient stand management in agriculture and forestry.

Plant Physiological Ecology

Author: Robert W. Pearcy
Publisher: Springer Science & Business Media
ISBN: 9401090130
Format: PDF, ePub
Download and Read
capable of providing at least a relative measure of stomatal aperture were first used shortly thereafter (Darwin and Pertz, 1911). The Carnegie Institution of Washington's Desert Research Laboratory in Tucson from 1905 to 1927 was the first effort by plant physiologists and ecologists to conduct team research on the water relations of desert plants. Measurements by Stocker in the North African deserts and Indonesia (Stocker, 1928, 1935) and by Lundegardh (1922) in forest understories were pioneering attempts to understand the environmental controls on photosynthesis in the field. While these early physiological ecologists were keen observers and often posed hypotheses still relevant today they were strongly limited by the methods and technologies available to them. Their measurements provided only rough approximations of the actual plant responses. The available laboratory equip ment was either unsuited or much more difficult to operate under field than laboratory conditions. Laboratory physiologists distrusted the results and ecologists were largely not persuaded of its relevance. Consequently, it was not until the 1950s and 1960s that physiological ecology began its current resurgence. While the reasons for this are complicated, the development and application of more sophisticated instruments such as the infrared gas analyzer played a major role. In addition, the development of micrometeorology led to new methods of characterizing the plant environments.

Exploitation of Environmental Heterogeneity by Plants

Author:
Publisher: Academic Press
ISBN: 0323139272
Format: PDF, Docs
Download and Read
There is a new emerging interest in the effects of gaps and patches on succession and biodiversity. This innovative volume is a synthesis of studies of plant responses to temporal and spatial heterogeneity, the exploitation of resources from pulses and patches by plants, and their competition with neighbors in the face of this variability. Aboveground, the book focuses upon the nature of canopy patchiness, consequences of this heterogeneity for the light environment, and the mechanisms by which plants respond to and exploit this patchiness. Belowground, the text explores the heterogeneity of soil environments and how root systems obtain nutrients and water in the context of this temporal and spatial variability. As a new reference in an evolving and growing field, this text is sure to be a valuable tool for researchers and advanced students in plant physiology, ecology, agronomy, and forestry alike.

Plant Stems

Author:
Publisher: Elsevier
ISBN: 9780080539089
Format: PDF
Download and Read
Stems, of various sizes and shapes, are involved in most of the organic processes and interactions of plants, ranging from support, transport, and storage to development and protection. The stem itself is a crucially important intermediary: it links above- and below ground organs-connecting roots to leaves. An international team of leading researchers vividly illustrate that stems are more than pipes, more than simple connecting and supporting structures; rather stems are critical, anatomically distinct structures of enormous variability. It is, to an unappreciated extent, this variability that underpins both the diversity and the success of plants in myriad ecosystems. Plant Stems will be a valuable resource on form/function relationships for researchers and graduate-level students in ecology, evolutionary biology, physiology, development, genetics, agricultural sciences, and horticulture as they unravel the mechanisms and processes that allow organisms and ecosystems to function. Syntheses of structural, physiological, and ecological functions of stems Multiple viewpoints on how stem structure relates to performance Highlights of major areas of plant biology long neglected