Orthogonal Polynomials in MATLAB

Author: Walter Gautschi
Publisher: SIAM
ISBN: 1611974305
Format: PDF, ePub, Mobi
Download and Read
Techniques for generating orthogonal polynomials numerically have appeared only recently, within the last 30 or so years.÷Orthogonal Polynomials in MATLAB: Exercises and Solutions÷describes these techniques and related applications, all supported by MATLAB programs, and presents them in a unique format of exercises and solutions designed by the author to stimulate participation. Important computational problems in the physical sciences are included as models for readers to solve their own problems.÷

Basic Complex Analysis A Comprehensive Course in Analysis Part 2A

Author: Barry Simon
Publisher: American Mathematical Soc.
ISBN: 1470411008
Format: PDF, Docs
Download and Read
A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 2A is devoted to basic complex analysis. It interweaves three analytic threads associated with Cauchy, Riemann, and Weierstrass, respectively. Cauchy's view focuses on the differential and integral calculus of functions of a complex variable, with the key topics being the Cauchy integral formula and contour integration. For Riemann, the geometry of the complex plane is central, with key topics being fractional linear transformations and conformal mapping. For Weierstrass, the power series is king, with key topics being spaces of analytic functions, the product formulas of Weierstrass and Hadamard, and the Weierstrass theory of elliptic functions. Subjects in this volume that are often missing in other texts include the Cauchy integral theorem when the contour is the boundary of a Jordan region, continued fractions, two proofs of the big Picard theorem, the uniformization theorem, Ahlfors's function, the sheaf of analytic germs, and Jacobi, as well as Weierstrass, elliptic functions.

Krylov Subspace Methods

Author: Jörg Liesen
Publisher: Oxford University Press
ISBN: 0199655413
Format: PDF, Kindle
Download and Read
Describes the principles and history behind the use of Krylov subspace methods in science and engineering. The outcome of the analysis is very practical and indicates what can and cannot be expected from the use of Krylov subspace methods, challenging some common assumptions and justifications of standard approaches.

The Mathematical Function Computation Handbook

Author: Nelson H.F. Beebe
Publisher: Springer
ISBN: 3319641107
Format: PDF, ePub
Download and Read
This highly comprehensive handbook provides a substantial advance in the computation of elementary and special functions of mathematics, extending the function coverage of major programming languages well beyond their international standards, including full support for decimal floating-point arithmetic. Written with clarity and focusing on the C language, the work pays extensive attention to little-understood aspects of floating-point and integer arithmetic, and to software portability, as well as to important historical architectures. It extends support to a future 256-bit, floating-point format offering 70 decimal digits of precision. Select Topics and Features: references an exceptionally useful, author-maintained MathCW website, containing source code for the book’s software, compiled libraries for numerous systems, pre-built C compilers, and other related materials; offers a unique approach to covering mathematical-function computation using decimal arithmetic; provides extremely versatile appendices for interfaces to numerous other languages: Ada, C#, C++, Fortran, Java, and Pascal; presupposes only basic familiarity with computer programming in a common language, as well as early level algebra; supplies a library that readily adapts for existing scripting languages, with minimal effort; supports both binary and decimal arithmetic, in up to 10 different floating-point formats; covers a significant portion (with highly accurate implementations) of the U.S National Institute of Standards and Technology’s 10-year project to codify mathematical functions. This highly practical text/reference is an invaluable tool for advanced undergraduates, recording many lessons of the intermingled history of computer hardw are and software, numerical algorithms, and mathematics. In addition, professional numerical analysts and others will find the handbook of real interest and utility because it builds on research by the mathematical software community over the last four decades.

Special Functions Their Applications

Author: N. N. Lebedev
Publisher: Courier Corporation
ISBN: 0486139891
Format: PDF, Mobi
Download and Read
Famous Russian work discusses the application of cylinder functions and spherical harmonics; gamma function; probability integral and related functions; Airy functions; hyper-geometric functions; more. Translated by Richard Silverman.

The Legacy of Leonhard Euler

Author: Lokenath Debnath
Publisher: World Scientific
ISBN: 1848165269
Format: PDF, ePub, Mobi
Download and Read
This book primarily serves as a historical research monograph on the biographical sketch and career of Leonhard Euler and his major contributions to numerous areas in the mathematical and physical sciences. It contains fourteen chapters describing Euler''s works on number theory, algebra, geometry, trigonometry, differential and integral calculus, analysis, infinite series and infinite products, ordinary and elliptic integrals and special functions, ordinary and partial differential equations, calculus of variations, graph theory and topology, mechanics and ballistic research, elasticity and fluid mechanics, physics and astronomy, probability and statistics. The book is written to provide a definitive impression of Euler''s personal and professional life as well as of the range, power, and depth of his unique contributions. This tricentennial tribute commemorates Euler the great man and Euler the universal mathematician of all time. Based on the author''s historically motivated method of teaching, special attention is given to demonstrate that Euler''s work had served as the basis of research and developments of mathematical and physical sciences for the last 300 years. An attempt is also made to examine his research and its relation to current mathematics and science. Based on a series of Euler''s extraordinary contributions, the historical development of many different subjects of mathematical sciences is traced with a linking commentary so that it puts the reader at the forefront of current research. Erratum. Sample Chapter(s). Chapter 1: Mathematics Before Leonhard Euler (434 KB). Contents: Mathematics Before Leonhard Euler; Brief Biographical Sketch and Career of Leonhard Euler; Euler''s Contributions to Number Theory and Algebra; Euler''s Contributions to Geometry and Spherical Trigonometry; Euler''s Formula for Polyhedra, Topology and Graph Theory; Euler''s Contributions to Calculus and Analysis; Euler''s Contributions to the Infinite Series and the Zeta Function; Euler''s Beta and Gamma Functions and Infinite Products; Euler and Differential Equations; The Euler Equations of Motion in Fluid Mechanics; Euler''s Contributions to Mechanics and Elasticity; Euler''s Work on the Probability Theory; Euler''s Contributions to Ballistics; Euler and His Work on Astronomy and Physics. Readership: Undergraduate and graduate students of mathematics, mathematics education, physics, engineering and science. As well as professionals and prospective mathematical scientists.