Basic Sciences for MCEM

Author: Chetan Trivedy
Publisher: CRC Press
ISBN: 0340985011
Format: PDF
Download and Read
This book is a dedicated resource for those sitting the Part A of the MCEM (Membership of the College of Emergency Medicine) examination. It forms an essential revision guide for emergency trainees who need to acquire a broad understanding of the basic sciences, which underpin their approach to clinical problems in the emergency department. Common clinical scenarios are used to highlight the essential underlying basic science principles, providing a link between clinical management and a knowledge of the underlying anatomical, physiological, pathological and biochemical processes. Multiple choice questions with reasoned answers are used to confirm the candidates understanding and for self testing. Unlike other recent revision books which provide MCQ questions with extended answers, this book uses clinical cases linked to the most recent basic science aspects of the CEM syllabus to provide a book that not only serves as a useful revision resource for the Part A component of the MCEM examination, but also a unique way of understanding the processes underlying common clinical cases seen every day in the emergency department. This book is essential for trainees sitting the Part A of the MCEM exam and for clinicians and medical students who need to refresh their knowledge of basic sciences relevant to the management of clinical emergencies.

Biomedical Engineering Fundamentals

Author: Joseph D. Bronzino
Publisher: CRC Press
ISBN: 143982519X
Format: PDF, Docs
Download and Read
Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering. Biomedical Engineering Fundamentals, the first volume of the handbook, presents material from respected scientists with diverse backgrounds in physiological systems, biomechanics, biomaterials, bioelectric phenomena, and neuroengineering. More than three dozen specific topics are examined, including cardiac biomechanics, the mechanics of blood vessels, cochlear mechanics, biodegradable biomaterials, soft tissue replacements, cellular biomechanics, neural engineering, electrical stimulation for paraplegia, and visual prostheses. The material is presented in a systematic manner and has been updated to reflect the latest applications and research findings.

Microcirculation

Author: Ronald F. Tuma
Publisher: Academic Press
ISBN: 9780080569932
Format: PDF
Download and Read
This reference is a volume in the Handbook of Physiology, co-published with The American Physiological Society. Growth in knowledge about the microcirculation has been explosive with the field becoming fragmented into numerous subdisciplines and subspecialties. This volume pulls all of the critical information into one volume. Meticulously edited and reviewed. Benefit: Provides investigators a unique tool to explore the significance of their findings in the context of other aspects of the microcirculation. In this way, the updated edition has a direct role in helping to develop new pathways of research and scholarship Highlights the explosive growth in knowledge about the microcirculation including the biology of nitric oxide synthase (NOS), endothelial cell signaling, angiogenesis, cell adhesion molecules, lymphocyte trafficking, ion channels and receptors, and propagated vasomotor responses. Benefit: Microcirculatory biology has become fragmented into numerous sub-disciplines and subspecialties, and these reference reintegrates the information in one volume

Skeletal Muscle Circulation

Author: Ronald J. Korthuis
Publisher: Morgan & Claypool Publishers
ISBN: 1615041834
Format: PDF, Mobi
Download and Read
The aim of this treatise is to summarize the current understanding of the mechanisms for blood flow control to skeletal muscle under resting conditions, how perfusion is elevated (exercise hyperemia) to meet the increased demand for oxygen and other substrates during exercise, mechanisms underlying the beneficial effects of regular physical activity on cardiovascular health, the regulation of transcapillary fluid filtration and protein flux across the microvascular exchange vessels, and the role of changes in the skeletal muscle circulation in pathologic states. Skeletal muscle is unique among organs in that its blood flow can change over a remarkably large range. Compared to blood flow at rest, muscle blood flow can increase by more than 20-fold on average during intense exercise, while perfusion of certain individual white muscles or portions of those muscles can increase by as much as 80-fold. This is compared to maximal increases of 4- to 6-fold in the coronary circulation during exercise. These increases in muscle perfusion are required to meet the enormous demands for oxygen and nutrients by the active muscles. Because of its large mass and the fact that skeletal muscles receive 25% of the cardiac output at rest, sympathetically mediated vasoconstriction in vessels supplying this tissue allows central hemodynamic variables (e.g., blood pressure) to be spared during stresses such as hypovolemic shock. Sympathetic vasoconstriction in skeletal muscle in such pathologic conditions also effectively shunts blood flow away from muscles to tissues that are more sensitive to reductions in their blood supply that might otherwise occur. Again, because of its large mass and percentage of cardiac output directed to skeletal muscle, alterations in blood vessel structure and function with chronic disease (e.g., hypertension) contribute significantly to the pathology of such disorders. Alterations in skeletal muscle vascular resistance and/or in the exchange properties of this vascular bed also modify transcapillary fluid filtration and solute movement across the microvascular barrier to influence muscle function and contribute to disease pathology. Finally, it is clear that exercise training induces an adaptive transformation to a protected phenotype in the vasculature supplying skeletal muscle and other tissues to promote overall cardiovascular health. Table of Contents: Introduction / Anatomy of Skeletal Muscle and Its Vascular Supply / Regulation of Vascular Tone in Skeletal Muscle / Exercise Hyperemia and Regulation of Tissue Oxygenation During Muscular Activity / Microvascular Fluid and Solute Exchange in Skeletal Muscle / Skeletal Muscle Circulation in Aging and Disease States: Protective Effects of Exercise / References

Handbook of Physiology

Author: William Dobinson Halliburton
Publisher: Palala Press
ISBN: 9781377981345
Format: PDF, Docs
Download and Read
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Features in the Architecture of Physiological Function

Author: Joseph Barcroft
Publisher: Cambridge University Press
ISBN: 1107502470
Format: PDF, Docs
Download and Read
Originally published in 1934, this book examines the key principles underlying animal physiology and the study of physiology. Barcroft shows how every natural internal process is affected and supported by other processes and systems, and concludes every chapter with a brief bibliography on the topics covered.