Geometry Topology and Quantum Field Theory

Author: P. Bandyopadhyay
Publisher: Springer Science & Business Media
ISBN: 9401716978
Format: PDF, Mobi
Download and Read
This is a monograph on geometrical and topological features which arise in quantum field theory. It is well known that when a chiral fermion interacts with a gauge field we have chiral anomaly which corresponds to the fact that divergence of the axial vector current does not vanish. It is observed that this is related to certain topological features associated with the fermion and leads to the realization of the topological origin of fermion number as well as the Berry phase. The role of gauge fields in the quantization procedure has its implications in these topological features of a fermion and helps us to consider a massive fermion as a soliton (skyrrnion). In this formalism chiral anomaly is found to be responsible for mass generation. This has its relevance in electroweak theory where it is observed that weak interaction gauge bosons attain mass topologically. The geometrical feature of a skyrmion also helps us to realize the internal symmetry of hadrons from reflection group. Finally it has been shown that noncommutative geometry where the space time manifold is taken to be X = M x Zz has its relevance in the description of a massive 4 fermion as a skyrmion when the discrete space is considered as the internal space and the symmetry breaking leads to chiral anomaly. In chap. l preliminary mathematical formulations related to the spinor structure have been discussed. In chap.

Topological Quantum Field Theory and Four Manifolds

Author: Jose Labastida
Publisher: Springer Science & Business Media
ISBN: 1402031777
Format: PDF, Kindle
Download and Read
The emergence of topological quantum ?eld theory has been one of the most important breakthroughs which have occurred in the context of ma- ematical physics in the last century, a century characterizedbyindependent developments of the main ideas in both disciplines, physics and mathematics, which has concluded with two decades of strong interaction between them, where physics, as in previous centuries, has acted as a source of new mat- matics. Topological quantum ?eld theories constitute the core of these p- nomena, although the main drivingforce behind it has been the enormous e?ort made in theoretical particle physics to understand string theory as a theory able to unify the four fundamental interactions observed in nature. These theories set up a new realm where both disciplines pro?t from each other. Although the most striking results have appeared on the mathema- calside,theoreticalphysicshasclearlyalsobene?tted,sincethecorresponding developments have helped better to understand aspects of the fundamentals of ?eld and string theory.

Differential Topology and Quantum Field Theory

Author: Charles Nash
Publisher: Elsevier
ISBN: 9780125140768
Format: PDF
Download and Read
The remarkable developments in differential topology and how these recent advances have been applied as a primary research tool in quantum field theory are presented here in a style reflecting the genuinely two-sided interaction between mathematical physics and applied mathematics. The author, following his previous work (Nash/Sen: Differential Topology for Physicists, Academic Press, 1983), covers elliptic differential and pseudo-differential operators, Atiyah-Singer index theory, topological quantum field theory, string theory, and knot theory. The explanatory approach serves to illuminate and clarify these theories for graduate students and research workers entering the field for the first time. Treats differential geometry, differential topology, and quantum field theory Includes elliptic differential and pseudo-differential operators, Atiyah-Singer index theory, topological quantum field theory, string theory, and knot theory Tackles problems of quantum field theory using differential topology as a tool

Geometry Fields and Cosmology

Author: Balasubramanian Iyer
Publisher: Springer Science & Business Media
ISBN: 9401716951
Format: PDF, ePub, Mobi
Download and Read
This volume is based on the lectures given at the First Inter University Graduate School on Gravitation and Cosmology organized by IUCAA, Pune, in 1989. This series of Schools have been carefully planned to provide a sound background and preparation for students embarking on research in these and related topics. Consequently, the contents of these lectures have been meticulously selected and arranged. The topics in the present volume offer a firm mathematical foundation for a number of subjects to be de veloped later. These include Geometrical Methods for Physics, Quantum Field Theory Methods and Relativistic Cosmology. The style of the book is pedagogical and should appeal to students and research workers attempt ing to learn the modern techniques involved. A number of specially selected problems with hints and solutions have been included to assist the reader in achieving mastery of the topics. We decided to bring out this volume containing the lecture notes since we felt that they would be useful to a wider community of research workers, many of whom could not participate in the school. We thank all the lecturers for their meticulous lectures, the enthusiasm they brought to the discussions and for kindly writing up their lecture notes. It is a pleasure to thank G. Manjunatha for his meticulous assistence over a long period, in preparing this volume for publication.

The Universal Coefficient Theorem and Quantum Field Theory

Author: Andrei-Tudor Patrascu
Publisher: Springer
ISBN: 3319461435
Format: PDF, Mobi
Download and Read
This thesis describes a new connection between algebraic geometry, topology, number theory and quantum field theory. It offers a pedagogical introduction to algebraic topology, allowing readers to rapidly develop basic skills, and it also presents original ideas to inspire new research in the quest for dualities. Its ambitious goal is to construct a method based on the universal coefficient theorem for identifying new dualities connecting different domains of quantum field theory. This thesis opens a new area of research in the domain of non-perturbative physics—one in which the use of different coefficient structures in (co)homology may lead to previously unknown connections between different regimes of quantum field theories. The origin of dualities is an issue in fundamental physics that continues to puzzle the research community with unexpected results like the AdS/CFT duality or the ER-EPR conjecture. This thesis analyzes these observations from a novel and original point of view, mainly based on a fundamental connection between number theory and topology. Beyond its scientific qualities, it also offers a pedagogical introduction to advanced mathematics and its connection with physics. This makes it a valuable resource for students in mathematical physics and researchers wanting to gain insights into (co)homology theories with coefficients or the way in which Grothendieck's work may be connected with physics.

Quantum Field Theory and Topology

Author: Albert S. Schwarz
Publisher: Springer Science & Business Media
ISBN: 366202943X
Format: PDF, ePub, Docs
Download and Read
In recent years topology has firmly established itself as an important part of the physicist's mathematical arsenal. It has many applications, first of all in quantum field theory, but increasingly also in other areas of physics. The main focus of this book is on the results of quantum field theory that are obtained by topological methods. Some aspects of the theory of condensed matter are also discussed. Part I is an introduction to quantum field theory: it discusses the basic Lagrangians used in the theory of elementary particles. Part II is devoted to the applications of topology to quantum field theory. Part III covers the necessary mathematical background in summary form. The book is aimed at physicists interested in applications of topology to physics and at mathematicians wishing to familiarize themselves with quantum field theory and the mathematical methods used in this field. It is accessible to graduate students in physics and mathematics.

Geometry Topology and Physics Second Edition

Author: Mikio Nakahara
Publisher: CRC Press
ISBN: 9780750306065
Format: PDF, Kindle
Download and Read
Differential geometry and topology have become essential tools for many theoretical physicists. In particular, they are indispensable in theoretical studies of condensed matter physics, gravity, and particle physics. Geometry, Topology and Physics, Second Edition introduces the ideas and techniques of differential geometry and topology at a level suitable for postgraduate students and researchers in these fields. The second edition of this popular and established text incorporates a number of changes designed to meet the needs of the reader and reflect the development of the subject. The book features a considerably expanded first chapter, reviewing aspects of path integral quantization and gauge theories. Chapter 2 introduces the mathematical concepts of maps, vector spaces, and topology. The following chapters focus on more elaborate concepts in geometry and topology and discuss the application of these concepts to liquid crystals, superfluid helium, general relativity, and bosonic string theory. Later chapters unify geometry and topology, exploring fiber bundles, characteristic classes, and index theorems. New to this second edition is the proof of the index theorem in terms of supersymmetric quantum mechanics. The final two chapters are devoted to the most fascinating applications of geometry and topology in contemporary physics, namely the study of anomalies in gauge field theories and the analysis of Polakov's bosonic string theory from the geometrical point of view. Geometry, Topology and Physics, Second Edition is an ideal introduction to differential geometry and topology for postgraduate students and researchers in theoretical and mathematical physics.

Topology Geometry and Quantum Field Theory

Author: Graeme Segal
Publisher: Cambridge University Press
ISBN: 9780521540490
Format: PDF, ePub
Download and Read
The symposium held in honour of the 60th birthday of Graeme Segal brought together leading physicists and mathematicians. Its topics were centred around string theory, M-theory, and quantum gravity on the one hand, and K-theory, elliptic cohomology, quantum cohomology and string topology on the other. Geometry and quantum physics developed in parallel since the recognition of the central role of non-abelian gauge theory in elementary particle physics in the late seventies and the emerging study of super-symmetry and string theory. With its selection of survey and research articles these proceedings fulfil the dual role of reporting on developments in the field and defining directions for future research. For the first time Graeme Segal's manuscript 'The definition of Conformal Field Theory' is published, which has been greatly influential over more than ten years. An introduction by the author puts it into the present context.

Conformal Field Theory and Topology

Author: Toshitake Kohno
Publisher: American Mathematical Soc.
ISBN: 9780821821305
Format: PDF, Mobi
Download and Read
The aim of this book is to provide the reader with an introduction to conformal field theory and its applications to topology. The author starts with a description of geometric aspects of conformal field theory based on loop groups. By means of the holonomy of conformal field theory he defines topological invariants for knots and 3-manifolds. He also gives a brief treatment of Chern-Simons perturbation theory.