Fundamentals of Multiphase Flow

Author: Christopher E. Brennen
Publisher: Cambridge University Press
ISBN: 9780521848046
Format: PDF, Mobi
Download and Read
Ideal for graduate students and researchers at the cutting edge of investigations into the fundamental nature of multiphase flows, this text presents the basic methods used in the treatment of multiphase flows.

Fundamentals of Multiphase Flow

Author: Christopher E. Brennen
Publisher: Cambridge University Press
ISBN: 1107717671
Format: PDF
Download and Read
This 2005 book is targeted to graduate students and researchers at the cutting edge of investigations into the fundamental nature of multiphase flows. It is intended as a reference book for the basic methods used in the treatment of multiphase flows. The subject of multiphase flows encompasses a vast field, a host of different technological contexts, a wide spectrum of different scales, a broad range of engineering disciplines, and a multitude of different analytical approaches. The aim of Fundamentals of Multiphase Flow is to bring much of this fundamental understanding together into one book, presenting a unifying approach to the fundamental ideas of multiphase flows. The book summarizes those fundamental concepts with relevance to a broad spectrum of multiphase flows. It does not pretend to present a comprehensive review of the details of any one multiphase flow or technological context; references to such reviews are included where appropriate.

Fundamentals of Multiphase Flow

Author: Christopher E. Brennen
Publisher: Cambridge University Press
ISBN: 9780521139984
Format: PDF, ePub
Download and Read
This book is targeted to graduate students and researchers at the cutting edge of investigations into the fundamental nature of multiphase flows. It is intended as a reference book for the basic methods used in the treatment of multiphase flows. The subject of multiphase flows encompasses a vast field whose broad spectrum presents a problem for the experimental and analytical methodologies that might be appropriate for the reader's interests. The aim of Fundamentals of Multiphase Flow is to bring much of this fundamental understanding together into one book, presenting a unifying approach to the fundamental ideas of multiphase flows. The book summarizes those fundamental concepts with relevance to a broad spectrum of multiphase flows. It does not pretend to present a comprehensive review of the details of any one multiphase flow or technological context; references to such reviews are included where appropriate.

Multiphase Flow Handbook

Author: Clayton T. Crowe
Publisher: CRC Press
ISBN: 1420040472
Format: PDF, ePub
Download and Read
Because of the importance of multiphase flows in a wide variety of industries, including power, petroleum, and numerous processing industries, an understanding of the behavior and underlying theoretical concepts of these systems is critical. Contributed by a team of prominent experts led by a specialist with more than thirty years of experience, the Multiphase Flow Handbook provides such an understanding, and much more. It covers all aspects of multiphase flows, from fundamentals to numerical methods and instrumentation. The book begins with an introduction to the fundamentals of particle/fluid/bubble interactions followed by gas/liquid flows and methods for calculating system parameters. It includes up-to-date information on practical industrial applications such as boiling and condensation, fluidized beds, aerosols, separation systems, pollution control, granular and porous media flow, pneumatic and slurry transport, and sprays. Coverage then turns to the most recent information on particle/droplet-fluid interactions, with a chapter devoted to microgravity and microscale flows and another on basic multiphase interactions. Rounding out the presentation, the authors discuss numerical methods, state-of-the art instrumentation, and advanced experimental techniques. Supplying up-to-date, authoritative information on all aspects of multiphase flows along with numerous problems and examples, the Multiphase Flow Handbook is the most complete reference available for understanding the flow of multiphase mixtures.

Theory and Modeling of Dispersed Multiphase Turbulent Reacting Flows

Author: Lixing Zhou
Publisher: Butterworth-Heinemann
ISBN: 0128134666
Format: PDF
Download and Read
Theory and Modeling of Dispersed Multiphase Turbulent Reacting Flows gives a systematic account of the fundamentals of multiphase flows, turbulent flows and combustion theory. It presents the latest advances of models and theories in the field of dispersed multiphase turbulent reacting flow, covering basic equations of multiphase turbulent reacting flows, modeling of turbulent flows, modeling of multiphase turbulent flows, modeling of turbulent combusting flows, and numerical methods for simulation of multiphase turbulent reacting flows, etc. The book is ideal for graduated students, researchers and engineers in many disciplines in power and mechanical engineering. Provides a combination of multiphase fluid dynamics, turbulence theory and combustion theory Covers physical phenomena, numerical modeling theory and methods, and their applications Presents applications in a wide range of engineering facilities, such as utility and industrial furnaces, gas-turbine and rocket engines, internal combustion engines, chemical reactors, and cyclone separators, etc.

Multiphase Flow Dynamics 1

Author: Nikolay Ivanov Kolev
Publisher: Springer Science & Business Media
ISBN: 3540698329
Format: PDF, Mobi
Download and Read
Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. In its third extended edition this monograph contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present first volume the fundamentals of multiphase dynamics are provided. This third edition includes various updates, extensions and improvements in all book chapters.

Multiphase Flow Dynamics 4

Author: Nikolay Ivanov Kolev
Publisher: Springer Science & Business Media
ISBN: 3642207499
Format: PDF
Download and Read
The present Volume 4 of the successful monograh package “Multiphase Flow Dynamics”is devoted to selected Chapters of the multiphase fluid dynamics that are important for practical applications but did not find place in the previous volumes. The state of the art of the turbulence modeling in multiphase flows is presented. As introduction, some basics of the single phase boundary layer theory including some important scales and flow oscillation characteristics in pipes and rod bundles are presented. Then the scales characterizing the dispersed flow systems are presented. The description of the turbulence is provided at different level of complexity: simple algebraic models for eddy viscosity, simple algebraic models based on the Boussinesq hypothesis, modification of the boundary layer share due to modification of the bulk turbulence, modification of the boundary layer share due to nucleate boiling. The role of the following forces on the mathematical description of turbulent flows is discussed: the lift force, the lubrication force in the wall boundary layer, and the dispersion force. A pragmatic generalization of the k-eps models for continuous velocity field is proposed containing flows in large volumes and flows in porous structures. A Methods of how to derive source and sinks terms for multiphase k-eps models is presented. A set of 13 single- and two phase benchmarks for verification of k-eps models in system computer codes are provided and reproduced with the IVA computer code as an example of the application of the theory. This methodology is intended to help other engineers and scientists to introduce this technology step-by-step in their own engineering practice. In many practical application gases are solved in liquids under given conditions, released under other conditions and therefore affecting technical processes for good of for bad. Useful information on the solubility of oxygen, nitrogen, hydrogen and carbon dioxide in water under large interval of pressures and temperatures is collected, and appropriate mathematical approximation functions are provided. In addition methods for the computation of the diffusion coefficients are described. With this information solution and dissolution dynamics in multiphase fluid flows can be analyzed. For this purpose the non-equilibrium absorption and release on bubble, droplet and film surfaces under different conditions is mathematically described. A systematic set of internally consistent state equations for diesel fuel gas and liquid valid in broad range of changing pressure and temperature is provided. This new second edition includes various updates, extensions, improvements and corrections. In many practical application gases are solved in liquids under given conditions, released under other conditions and therefore affecting technical processes for good of for bad. Useful information on the solubility of oxygen, nitrogen, hydrogen and carbon dioxide in water under large interval of pressures and temperatures is collected, and appropriate mathematical approximation functions are provided. In addition methods for the computation of the diffusion coefficients are described. With this information solution and dissolution dynamics in multiphase fluid flows can be analyzed. For this purpose the non-equilibrium absorption and release on bubble, droplet and film surfaces under different conditions is mathematically described. A systematic set of internally consistent state equations for diesel fuel gas and liquid valid in broad range of changing pressure and temperature is provided. This new second edition includes various updates, extensions, improvements and corrections.

Multiphase Flow Dynamics 1

Author: Nikolay Ivanov Kolev
Publisher: Springer Science & Business Media
ISBN: 3540698337
Format: PDF, Docs
Download and Read
Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. In its third extended edition this monograph contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present first volume the fundamentals of multiphase dynamics are provided. This third edition includes various updates, extensions and improvements in all book chapters.

Multiphase Flow in Polymer Processing

Author: Chang Han
Publisher: Elsevier
ISBN: 0323149022
Format: PDF, ePub, Mobi
Download and Read
Multiphase Flow in Polymer Processing focuses on dispersed and stratified multiphase flow in polymer processing. This book explores the rheological behavior of multiphase (or multicomponent) polymeric systems as they are involved in various fabrication operations. It also outlines the importance of the morphological states of multiphase polymeric systems to explain the systems, rheological behavior in the fluid state, and mechanical behavior in the solid state. This monograph consists of eight chapters divided into two parts. After discussing dispersed and stratified multiphase flow in polymer processing, it introduces the reader to the fundamentals of rheology. The following chapters focus on the rheological behavior of particulate-filled polymeric systems and heterogeneous polymeric systems; the phenomenon of droplet breakup in dispersed flow; and gas-charged polymeric systems. The role of the discrete phase (that is, solid particles, liquid droplets, gas bubbles) in determining the bulk rheological properties of the multiphase system is highlighted, along with some representative polymer processing operations (namely, fiber spinning and injection molding) of the multiphase (or multicomponent) polymeric systems. Coextrusion in cylindrical, rectangular, and annular dies is also considered. The final chapter is devoted to the phenomenon of interfacial instability in coextrusion. This text will be a useful resource for chemists, chemical engineers, and those in the polymer processing industry.

Multiphase Flow and Fluidization

Author: Dimitri Gidaspow
Publisher: Elsevier
ISBN: 0080512267
Format: PDF, ePub
Download and Read
Useful as a reference for engineers in industry and as an advanced level text for graduate engineering students, Multiphase Flow and Fluidization takes the reader beyond the theoretical to demonstrate how multiphase flow equations can be used to provide applied, practical, predictive solutions to industrial fluidization problems. Written to help advance progress in the emerging science of multiphase flow, this book begins with the development of the conservation laws and moves on through kinetic theory, clarifying many physical concepts (such as particulate viscosity and solids pressure) and introducing the new dependent variable--the volume fraction of the dispersed phase. Exercises at the end of each chapterare provided for further study and lead into applications not covered in the text itself. Treats fluidization as a branch of transport phenomena Demonstrates how to do transient, multidimensional simulation of multiphase processes The first book to apply kinetic theory to flow of particulates Is the only book to discuss numerical stability of multiphase equations and whether or not such equations are well-posed Explains the origin of bubbles and the concept of critical granular flow Presents clearly written exercises at the end of each chapter to facilitate understanding and further study