Discrete Data Analysis with R

Author: Michael Friendly
Publisher: CRC Press
ISBN: 1498725856
Format: PDF, Kindle
Download and Read
An Applied Treatment of Modern Graphical Methods for Analyzing Categorical Data Discrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data presents an applied treatment of modern methods for the analysis of categorical data, both discrete response data and frequency data. It explains how to use graphical methods for exploring data, spotting unusual features, visualizing fitted models, and presenting results. The book is designed for advanced undergraduate and graduate students in the social and health sciences, epidemiology, economics, business, statistics, and biostatistics as well as researchers, methodologists, and consultants who can use the methods with their own data and analyses. Along with describing the necessary statistical theory, the authors illustrate the practical application of the techniques to a large number of substantive problems, including how to organize data, conduct an analysis, produce informative graphs, and evaluate what the graphs reveal about the data. The first part of the book contains introductory material on graphical methods for discrete data, basic R skills, and methods for fitting and visualizing one-way discrete distributions. The second part focuses on simple, traditional nonparametric tests and exploratory methods for visualizing patterns of association in two-way and larger frequency tables. The final part of the text discusses model-based methods for the analysis of discrete data. Web Resource The data sets and R software used, including the authors’ own vcd and vcdExtra packages, are available at http://cran.r-project.org.

Analysis of Categorical Data with R

Author: Christopher R. Bilder
Publisher: CRC Press
ISBN: 1439855676
Format: PDF, ePub, Docs
Download and Read
Learn How to Properly Analyze Categorical Data Analysis of Categorical Data with R presents a modern account of categorical data analysis using the popular R software. It covers recent techniques of model building and assessment for binary, multicategory, and count response variables and discusses fundamentals, such as odds ratio and probability estimation. The authors give detailed advice and guidelines on which procedures to use and why to use them. The Use of R as Both a Data Analysis Method and a Learning Tool Requiring no prior experience with R, the text offers an introduction to the essential features and functions of R. It incorporates numerous examples from medicine, psychology, sports, ecology, and other areas, along with extensive R code and output. The authors use data simulation in R to help readers understand the underlying assumptions of a procedure and then to evaluate the procedure’s performance. They also present many graphical demonstrations of the features and properties of various analysis methods. Web Resource The data sets and R programs from each example are available at www.chrisbilder.com/categorical. The programs include code used to create every plot and piece of output. Many of these programs contain code to demonstrate additional features or to perform more detailed analyses than what is in the text. Designed to be used in tandem with the book, the website also uniquely provides videos of the authors teaching a course on the subject. These videos include live, in-class recordings, which instructors may find useful in a blended or flipped classroom setting. The videos are also suitable as a substitute for a short course.

Graphics for Statistics and Data Analysis with R

Author: Kevin J Keen
Publisher: CRC Press
ISBN: 1584880872
Format: PDF, ePub, Mobi
Download and Read
Graphics for Statistics and Data Analysis with R presents the basic principles of sound graphical design and applies these principles to engaging examples using the graphical functions available in R. It offers a wide array of graphical displays for the presentation of data, including modern tools for data visualization and representation. The book considers graphical displays of a single discrete variable, a single continuous variable, and then two or more of each of these. It includes displays and the R code for producing the displays for the dot chart, bar chart, pictographs, stemplot, boxplot, and variations on the quantile-quantile plot. The author discusses nonparametric and parametric density estimation, diagnostic plots for the simple linear regression model, polynomial regression, and locally weighted polynomial regression for producing a smooth curve through data on a scatterplot. The last chapter illustrates visualizing multivariate data with examples using Trellis graphics. Showing how to use graphics to display or summarize data, this text provides best practice guidelines for producing and choosing among graphical displays. It also covers the most effective graphing functions in R. R code is available for download on the book’s website.

Visualizing Categorical Data

Author: Michael Friendly
Publisher: SAS Press
ISBN: 9781580256605
Format: PDF, Mobi
Download and Read
Graphical methods for quantitative data are well developed and widely used. However, until now with this comprehensive treatment, few graphical methods existed for categorical data. In this innovative book, the author presents many aspects of the relationships among variables, the adequacy of a fitted model, and possibly unusual features of the data that can best be seen and appreciated in an informative graphical display.

Applied Categorical and Count Data Analysis

Author: Wan Tang
Publisher: CRC Press
ISBN: 1439806241
Format: PDF, Mobi
Download and Read
Developed from the authors’ graduate-level biostatistics course, Applied Categorical and Count Data Analysis explains how to perform the statistical analysis of discrete data, including categorical and count outcomes. The authors describe the basic ideas underlying each concept, model, and approach to give readers a good grasp of the fundamentals of the methodology without using rigorous mathematical arguments. The text covers classic concepts and popular topics, such as contingency tables, logistic models, and Poisson regression models, along with modern areas that include models for zero-modified count outcomes, parametric and semiparametric longitudinal data analysis, reliability analysis, and methods for dealing with missing values. R, SAS, SPSS, and Stata programming codes are provided for all the examples, enabling readers to immediately experiment with the data in the examples and even adapt or extend the codes to fit data from their own studies. Designed for a one-semester course for graduate and senior undergraduate students in biostatistics, this self-contained text is also suitable as a self-learning guide for biomedical and psychosocial researchers. It will help readers analyze data with discrete variables in a wide range of biomedical and psychosocial research fields.

Graphical Data Analysis with R

Author: Antony Unwin
Publisher: CRC Press
ISBN: 1498786774
Format: PDF, ePub, Mobi
Download and Read
See How Graphics Reveal Information Graphical Data Analysis with R shows you what information you can gain from graphical displays. The book focuses on why you draw graphics to display data and which graphics to draw (and uses R to do so). All the datasets are available in R or one of its packages and the R code is available at rosuda.org/GDA. Graphical data analysis is useful for data cleaning, exploring data structure, detecting outliers and unusual groups, identifying trends and clusters, spotting local patterns, evaluating modelling output, and presenting results. This book guides you in choosing graphics and understanding what information you can glean from them. It can be used as a primary text in a graphical data analysis course or as a supplement in a statistics course. Colour graphics are used throughout.

Categorical Data Analysis by Example

Author: Graham J. G. Upton
Publisher: John Wiley & Sons
ISBN: 1119307937
Format: PDF, Docs
Download and Read
Introduces the key concepts in the analysis of categoricaldata with illustrative examples and accompanying R code This book is aimed at all those who wish to discover how to analyze categorical data without getting immersed in complicated mathematics and without needing to wade through a large amount of prose. It is aimed at researchers with their own data ready to be analyzed and at students who would like an approachable alternative view of the subject. Each new topic in categorical data analysis is illustrated with an example that readers can apply to their own sets of data. In many cases, R code is given and excerpts from the resulting output are presented. In the context of log-linear models for cross-tabulations, two specialties of the house have been included: the use of cobweb diagrams to get visual information concerning significant interactions, and a procedure for detecting outlier category combinations. The R code used for these is available and may be freely adapted. In addition, this book: Uses an example to illustrate each new topic in categorical data Provides a clear explanation of an important subject Is understandable to most readers with minimal statistical and mathematical backgrounds Contains examples that are accompanied by R code and resulting output Includes starred sections that provide more background details for interested readers Categorical Data Analysis by Example is a reference for students in statistics and researchers in other disciplines, especially the social sciences, who use categorical data. This book is also a reference for practitioners in market research, medicine, and other fields.

Modern Data Science with R

Author: Benjamin S. Baumer
Publisher: CRC Press
ISBN: 1498724493
Format: PDF, Kindle
Download and Read
Modern Data Science with R is a comprehensive data science textbook for undergraduates that incorporates statistical and computational thinking to solve real-world problems with data. Rather than focus exclusively on case studies or programming syntax, this book illustrates how statistical programming in the state-of-the-art R/RStudio computing environment can be leveraged to extract meaningful information from a variety of data in the service of addressing compelling statistical questions. Contemporary data science requires a tight integration of knowledge from statistics, computer science, mathematics, and a domain of application. This book will help readers with some background in statistics and modest prior experience with coding develop and practice the appropriate skills to tackle complex data science projects. The book features a number of exercises and has a flexible organization conducive to teaching a variety of semester courses.

Modeling Discrete Time to Event Data

Author: Gerhard Tutz
Publisher: Springer
ISBN: 3319281585
Format: PDF
Download and Read
This book focuses on statistical methods for the analysis of discrete failure times. Failure time analysis is one of the most important fields in statistical research, with applications affecting a wide range of disciplines, in particular, demography, econometrics, epidemiology and clinical research. Although there are a large variety of statistical methods for failure time analysis, many techniques are designed for failure times that are measured on a continuous scale. In empirical studies, however, failure times are often discrete, either because they have been measured in intervals (e.g., quarterly or yearly) or because they have been rounded or grouped. The book covers well-established methods like life-table analysis and discrete hazard regression models, but also introduces state-of-the art techniques for model evaluation, nonparametric estimation and variable selection. Throughout, the methods are illustrated by real life applications, and relationships to survival analysis in continuous time are explained. Each section includes a set of exercises on the respective topics. Various functions and tools for the analysis of discrete survival data are collected in the R package discSurv that accompanies the book.

Visual Statistics

Author: Forrest W. Young
Publisher: John Wiley & Sons
ISBN: 1118165411
Format: PDF, ePub, Mobi
Download and Read
A visually intuitive approach to statistical data analysis Visual Statistics brings the most complex and advanced statistical methods within reach of those with little statistical training by using animated graphics of the data. Using ViSta: The Visual Statistics System-developed by Forrest Young and Pedro Valero-Mora and available free of charge on the Internet-students can easily create fully interactive visualizations from relevant mathematical statistics, promoting perceptual and cognitive understanding of the data's story. An emphasis is placed on a paradigm for understanding data that is visual, intuitive, geometric, and active, rather than one that relies on convoluted logic, heavy mathematics, systems of algebraic equations, or passive acceptance of results. A companion Web site complements the book by further demonstrating the concept of creating interactive and dynamic graphics. The book provides users with the opportunity to view the graphics in a dynamic way by illustrating how to analyze statistical data and explore the concepts of visual statistics. Visual Statistics addresses and features the following topics: * Why use dynamic graphics? * A history of statistical graphics * Visual statistics and the graphical user interface * Visual statistics and the scientific method * Character-based statistical interface objects * Graphics-based statistical interfaces * Visualization for exploring univariate data This is an excellent textbook for undergraduate courses in data analysis and regression, for students majoring or minoring in statistics, mathematics, science, engineering, and computer science, as well as for graduate-level courses in mathematics. The book is also ideal as a reference/self-study guide for engineers, scientists, and mathematicians. With contributions by highly regarded professionals in the field, Visual Statistics not only improves a student's understanding of statistics, but also builds confidence to overcome problems that may have previously been intimidating.