Coding the Matrix

Author: Philip N. Klein
Publisher:
ISBN: 9780615856735
Format: PDF, ePub, Mobi
Download and Read
An engaging introduction to vectors and matrices and the algorithms that operate on them, intended for the student who knows how to program. Mathematical concepts and computational problems are motivated by applications in computer science. The reader learns by "doing," writing programs to implement the mathematical concepts and using them to carry out tasks and explore the applications. Examples include: error-correcting codes, transformations in graphics, face detection, encryption and secret-sharing, integer factoring, removing perspective from an image, PageRank (Google's ranking algorithm), and cancer detection from cell features. A companion web site, codingthematrix.com provides data and support code. Most of the assignments can be auto-graded online. Over two hundred illustrations, including a selection of relevant "xkcd" comics. Chapters: "The Function," "The Field," "The Vector," "The Vector Space," "The Matrix," "The Basis," "Dimension," "Gaussian Elimination," "The Inner Product," "Special Bases," "The Singular Value Decomposition," "The Eigenvector," "The Linear Program" A new edition of this text, incorporating corrections and an expanded index, has been issued as of September 4, 2013, and will soon be available on Amazon.

Coding the Matrix

Author: Philip N. Klein
Publisher: Lightning Source Incorporated
ISBN: 9780615880990
Format: PDF, ePub
Download and Read
An engaging introduction to vectors and matrices and the algorithms that operate on them, intended for the student who knows how to program. Mathematical concepts and computational problems are motivated by applications in computer science. The reader learns by doing, writing programs to implement the mathematical concepts and using them to carry out tasks and explore the applications. Examples include: error-correcting codes, transformations in graphics, face detection, encryption and secret-sharing, integer factoring, removing perspective from an image, PageRank (Google's ranking algorithm), and cancer detection from cell features. A companion web site, codingthematrix.com provides data and support code. Most of the assignments can be auto-graded online. Over two hundred illustrations, including a selection of relevant xkcd comics. Chapters: The Function, The Field, The Vector, The Vector Space, The Matrix, The Basis, Dimension, Gaussian Elimination, The Inner Product, Special Bases, The Singular Value Decomposition, The Eigenvector, The Linear Program

Linear Algebra and Probability for Computer Science Applications

Author: Ernest Davis
Publisher: CRC Press
ISBN: 1466501553
Format: PDF, ePub
Download and Read
Based on the author’s course at NYU, Linear Algebra and Probability for Computer Science Applications gives an introduction to two mathematical fields that are fundamental in many areas of computer science. The course and the text are addressed to students with a very weak mathematical background. Most of the chapters discuss relevant MATLAB® functions and features and give sample assignments in MATLAB; the author’s website provides the MATLAB code from the book. After an introductory chapter on MATLAB, the text is divided into two sections. The section on linear algebra gives an introduction to the theory of vectors, matrices, and linear transformations over the reals. It includes an extensive discussion on Gaussian elimination, geometric applications, and change of basis. It also introduces the issues of numerical stability and round-off error, the discrete Fourier transform, and singular value decomposition. The section on probability presents an introduction to the basic theory of probability and numerical random variables; later chapters discuss Markov models, Monte Carlo methods, information theory, and basic statistical techniques. The focus throughout is on topics and examples that are particularly relevant to computer science applications; for example, there is an extensive discussion on the use of hidden Markov models for tagging text and a discussion of the Zipf (inverse power law) distribution. Examples and Programming Assignments The examples and programming assignments focus on computer science applications. The applications covered are drawn from a range of computer science areas, including computer graphics, computer vision, robotics, natural language processing, web search, machine learning, statistical analysis, game playing, graph theory, scientific computing, decision theory, coding, cryptography, network analysis, data compression, and signal processing. Homework Problems Comprehensive problem sections include traditional calculation exercises, thought problems such as proofs, and programming assignments that involve creating MATLAB functions.

Linear Algebra Tools for Data Mining

Author: Dan A. Simovici
Publisher: World Scientific
ISBN: 981438349X
Format: PDF, Kindle
Download and Read
This comprehensive volume presents the foundations of linear algebra ideas and techniques applied to data mining and related fields. Linear algebra has gained increasing importance in data mining and pattern recognition, as shown by the many current data mining publications, and has a strong impact in other disciplines like psychology, chemistry, and biology. The basic material is accompanied by more than 550 exercises and supplements, many accompanied with complete solutions and MATLAB applications. Key Features Integrates the mathematical developments to their applications in data mining without sacrificing the mathematical rigor Presented applications with full mathematical justifications and are often accompanied by MATLAB code Highlights strong links between linear algebra, topology and graph theory because these links are essentially important for applications A self-contained book that deals with mathematics that is immediately relevant for data mining Book jacket.

Coding the Matrix

Author: Louis E. Ball
Publisher: CreateSpace
ISBN: 9781517033804
Format: PDF, ePub, Docs
Download and Read
This updated and expanded second edition of the Coding the Matrix: Linear Algebra through Computer Science Applications provides a user-friendly introduction to the subject, Taking a clear structural framework, it guides the reader through the subject's core elements. A flowing writing style combines with the use of illustrations and diagrams throughout the text to ensure the reader understands even the most complex of concepts. This succinct and enlightening overview is a required reading for all those interested in the subject . We hope you find this book useful in shaping your future career & Business. Feel free to send us your inquiries related to our publications to [email protected]

Matrix Theory

Author: Joel N. Franklin
Publisher: Courier Corporation
ISBN: 0486136388
Format: PDF, Docs
Download and Read
Mathematically rigorous introduction covers vector and matrix norms, the condition-number of a matrix, positive and irreducible matrices, much more. Only elementary algebra and calculus required. Includes problem-solving exercises. 1968 edition.

Linear Algebra for Computational Sciences and Engineering

Author: Ferrante Neri
Publisher: Springer
ISBN: 3319403419
Format: PDF, Kindle
Download and Read
This book presents the main concepts of linear algebra from the viewpoint of applied scientists such as computer scientists and engineers, without compromising on mathematical rigor. Based on the idea that computational scientists and engineers need, in both research and professional life, an understanding of theoretical concepts of mathematics in order to be able to propose research advances and innovative solutions, every concept is thoroughly introduced and is accompanied by its informal interpretation. Furthermore, most of the theorems included are first rigorously proved and then shown in practice by a numerical example. When appropriate, topics are presented also by means of pseudocodes, thus highlighting the computer implementation of algebraic theory. It is structured to be accessible to everybody, from students of pure mathematics who are approaching algebra for the first time to researchers and graduate students in applied sciences who need a theoretical manual of algebra to successfully perform their research. Most importantly, this book is designed to be ideal for both theoretical and practical minds and to offer to both alternative and complementary perspectives to study and understand linear algebra.

Linear Algebra

Author: Kuldeep Singh
Publisher: Oxford University Press
ISBN: 0199654441
Format: PDF, Kindle
Download and Read
Linear algebra is a fundamental area of mathematics, and arguably the most powerful mathematical tool ever developed. This dynamic and engaging book uses numerous examples, question and answer sections, and historical biographies to provide an introduction to linear algebra for undergraduates in mathematics, the physical sciences and engineering.

A Cryptography Primer

Author: Philip N. Klein
Publisher: Cambridge University Press
ISBN: 1139916106
Format: PDF, ePub, Docs
Download and Read
Cryptography has been employed in war and diplomacy from the time of Julius Caesar. In our Internet age, cryptography's most widespread application may be for commerce, from protecting the security of electronic transfers to guarding communication from industrial espionage. This accessible introduction for undergraduates explains the cryptographic protocols for achieving privacy of communication and the use of digital signatures for certifying the validity, integrity, and origin of a message, document, or program. Rather than offering a how-to on configuring web browsers and e-mail programs, the author provides a guide to the principles and elementary mathematics underlying modern cryptography, giving readers a look under the hood for security techniques and the reasons they are thought to be secure.

Matrix Algebra

Author: James E. Gentle
Publisher: Springer
ISBN: 3319648675
Format: PDF, Mobi
Download and Read
Matrix algebra is one of the most important areas of mathematics for data analysis and for statistical theory. This much-needed work presents the relevant aspects of the theory of matrix algebra for applications in statistics. It moves on to consider the various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. Finally, it covers numerical linear algebra, beginning with a discussion of the basics of numerical computations, and following up with accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors.