Analyzing Sensory Data with R

Author: Sebastien Le
Publisher: CRC Press
ISBN: 146656573X
Format: PDF, Kindle
Download and Read
Choose the Proper Statistical Method for Your Sensory Data Issue Analyzing Sensory Data with R gives you the foundation to analyze and interpret sensory data. The book helps you find the most appropriate statistical method to tackle your sensory data issue. Covering quantitative, qualitative, and affective approaches, the book presents the big picture of sensory evaluation. Through an integrated approach that connects the different dimensions of sensory evaluation, you’ll understand: The reasons why sensory data are collected The ways in which the data are collected and analyzed The intrinsic meaning of the data The interpretation of the data analysis results Each chapter corresponds to one main sensory topic. The chapters start with presenting the nature of the sensory evaluation and its objectives, the sensory particularities related to the sensory evaluation, details about the data set obtained, and the statistical analyses required. Using real examples, the authors then illustrate step by step how the analyses are performed in R. The chapters conclude with variants and extensions of the methods that are related to the sensory task itself, the statistical methodology, or both.

Exploratory Multivariate Analysis by Example Using R Second Edition

Author: Francois Husson
Publisher: CRC Press
ISBN: 1315301865
Format: PDF
Download and Read
Full of real-world case studies and practical advice, Exploratory Multivariate Analysis by Example Using R, Second Edition focuses on four fundamental methods of multivariate exploratory data analysis that are most suitable for applications. It covers principal component analysis (PCA) when variables are quantitative, correspondence analysis (CA) and multiple correspondence analysis (MCA) when variables are categorical, and hierarchical cluster analysis. The authors take a geometric point of view that provides a unified vision for exploring multivariate data tables. Within this framework, they present the principles, indicators, and ways of representing and visualising objects that are common to the exploratory methods. The authors show how to use categorical variables in a PCA context in which variables are quantitative, how to handle more than two categorical variables in a CA context in which there are originally two variables, and how to add quantitative variables in an MCA context in which variables are categorical. They also illustrate the methods using examples from various fields, with related R code accessible in the FactoMineR package developed by the authors. The book has been written using minimal mathematics so as to appeal to applied statisticians, as well as researchers from various disciplines, including medical research and the social sciences. Readers can use the theory, examples, and software presented in this book in order to be fully equipped to tackle real-life multivariate data.

Information Quality

Author: Ron S. Kenett
Publisher: John Wiley & Sons
ISBN: 1118890655
Format: PDF, ePub, Docs
Download and Read
Provides an important framework for data analysts in assessing the quality of data and its potential to provide meaningful insights through analysis Analytics and statistical analysis have become pervasive topics, mainly due to the growing availability of data and analytic tools. Technology, however, fails to deliver insights with added value if the quality of the information it generates is not assured. Information Quality (InfoQ) is a tool developed by the authors to assess the potential of a dataset to achieve a goal of interest, using data analysis. Whether the information quality of a dataset is sufficient is of practical importance at many stages of the data analytics journey, from the pre-data collection stage to the post-data collection and post-analysis stages. It is also critical to various stakeholders: data collection agencies, analysts, data scientists, and management. This book: Explains how to integrate the notions of goal, data, analysis and utility that are the main building blocks of data analysis within any domain. Presents a framework for integrating domain knowledge with data analysis. Provides a combination of both methodological and practical aspects of data analysis. Discusses issues surrounding the implementation and integration of InfoQ in both academic programmes and business / industrial projects. Showcases numerous case studies in a variety of application areas such as education, healthcare, official statistics, risk management and marketing surveys. Presents a review of software tools from the InfoQ perspective along with example datasets on an accompanying website. This book will be beneficial for researchers in academia and in industry, analysts, consultants, and agencies that collect and analyse data as well as undergraduate and postgraduate courses involving data analysis.

Multiple Factor Analysis by Example Using R

Author: Jérôme Pagès
Publisher: CRC Press
ISBN: 1498786693
Format: PDF, Kindle
Download and Read
Multiple factor analysis (MFA) enables users to analyze tables of individuals and variables in which the variables are structured into quantitative, qualitative, or mixed groups. Written by the co-developer of this methodology, Multiple Factor Analysis by Example Using R brings together the theoretical and methodological aspects of MFA. It also includes examples of applications and details of how to implement MFA using an R package (FactoMineR). The first two chapters cover the basic factorial analysis methods of principal component analysis (PCA) and multiple correspondence analysis (MCA). The next chapter discusses factor analysis for mixed data (FAMD), a little-known method for simultaneously analyzing quantitative and qualitative variables without group distinction. Focusing on MFA, subsequent chapters examine the key points of MFA in the context of quantitative variables as well as qualitative and mixed data. The author also compares MFA and Procrustes analysis and presents a natural extension of MFA: hierarchical MFA (HMFA). The final chapter explores several elements of matrix calculation and metric spaces used in the book.

Dynamic Documents with R and knitr Second Edition

Author: Yihui Xie
Publisher: CRC Press
ISBN: 1315360705
Format: PDF, ePub, Docs
Download and Read
Quickly and Easily Write Dynamic Documents Suitable for both beginners and advanced users, Dynamic Documents with R and knitr, Second Edition makes writing statistical reports easier by integrating computing directly with reporting. Reports range from homework, projects, exams, books, blogs, and web pages to virtually any documents related to statistical graphics, computing, and data analysis. The book covers basic applications for beginners while guiding power users in understanding the extensibility of the knitr package. New to the Second Edition A new chapter that introduces R Markdown v2 Changes that reflect improvements in the knitr package New sections on generating tables, defining custom printing methods for objects in code chunks, the C/Fortran engines, the Stan engine, running engines in a persistent session, and starting a local server to serve dynamic documents Boost Your Productivity in Statistical Report Writing and Make Your Scientific Computing with R Reproducible Like its highly praised predecessor, this edition shows you how to improve your efficiency in writing reports. The book takes you from program output to publication-quality reports, helping you fine-tune every aspect of your report.

Survival Analysis with Interval Censored Data

Author: Kris Bogaerts
Publisher: CRC Press
ISBN: 1351643053
Format: PDF, ePub, Mobi
Download and Read
Survival Analysis with Interval-Censored Data: A Practical Approach with Examples in R, SAS, and BUGS provides the reader with a practical introduction into the analysis of interval-censored survival times. Although many theoretical developments have appeared in the last fifty years, interval censoring is often ignored in practice. Many are unaware of the impact of inappropriately dealing with interval censoring. In addition, the necessary software is at times difficult to trace. This book fills in the gap between theory and practice. Features: -Provides an overview of frequentist as well as Bayesian methods. -Include a focus on practical aspects and applications. -Extensively illustrates the methods with examples using R, SAS, and BUGS. Full programs are available on a supplementary website. The authors: Kris Bogaerts is project manager at I-BioStat, KU Leuven. He received his PhD in science (statistics) at KU Leuven on the analysis of interval-censored data. He has gained expertise in a great variety of statistical topics with a focus on the design and analysis of clinical trials. Arnošt Komárek is associate professor of statistics at Charles University, Prague. His subject area of expertise covers mainly survival analysis with the emphasis on interval-censored data and classification based on longitudinal data. He is past chair of the Statistical Modelling Society?and editor of?Statistical Modelling: An International Journal. Emmanuel Lesaffre is professor of biostatistics at I-BioStat, KU Leuven. His research interests include Bayesian methods, longitudinal data analysis, statistical modelling, analysis of dental data, interval-censored data, misclassification issues, and clinical trials. He is the founding chair of the?Statistical Modelling Society, past-president of the?International Society for Clinical Biostatistics,?and fellow of?ISI?and?ASA.

Customer and Business Analytics

Author: Daniel S. Putler
Publisher: CRC Press
ISBN: 149875970X
Format: PDF, ePub
Download and Read
Customer and Business Analytics: Applied Data Mining for Business Decision Making Using R explains and demonstrates, via the accompanying open-source software, how advanced analytical tools can address various business problems. It also gives insight into some of the challenges faced when deploying these tools. Extensively classroom-tested, the text is ideal for students in customer and business analytics or applied data mining as well as professionals in small- to medium-sized organizations. The book offers an intuitive understanding of how different analytics algorithms work. Where necessary, the authors explain the underlying mathematics in an accessible manner. Each technique presented includes a detailed tutorial that enables hands-on experience with real data. The authors also discuss issues often encountered in applied data mining projects and present the CRISP-DM process model as a practical framework for organizing these projects. Showing how data mining can improve the performance of organizations, this book and its R-based software provide the skills and tools needed to successfully develop advanced analytics capabilities.

Individual Differences in Sensory and Consumer Science

Author: Tormod Næs
Publisher: Woodhead Publishing
ISBN: 0081011148
Format: PDF, ePub
Download and Read
Individual Differences in Sensory and Consumer Science: Experimentation, Analysis and Interpretation presents easily readable, state-of-the-art coverage on how to plan and execute experiments that give rise to individual differences, also providing the framework for successful analysis and interpretation of results. The book highlights the different methodologies that can be applied and how to select the correct methodology based on the type of study you are performing, be it product research and development, quality control or consumer acceptance studies. Written by an experienced team of statisticians and sensory and consumer scientists, the book provides both academics and industry professionals with the first complete overview of a topic of ever-increasing importance. Identifies how to plan and execute experiments in sensory and consumer science Analyzes and interprets individual variances in sensory and consumer research Differentiates best practices for examining product development, quality control and consumer acceptance

Ranking of Multivariate Populations

Author: Livio Corain
Publisher: CRC Press
ISBN: 1315360462
Format: PDF, ePub, Docs
Download and Read
Ranking of Multivariate Populations: A Permutation Approach with Applications presents a novel permutation-based nonparametric approach for ranking several multivariate populations. Using data collected from both experimental and observation studies, it covers some of the most useful designs widely applied in research and industry investigations, such as multivariate analysis of variance (MANOVA) and multivariate randomized complete block (MRCB) designs. The first section of the book introduces the topic of ranking multivariate populations by presenting the main theoretical ideas and an in-depth literature review. The second section discusses a large number of real case studies from four specific research areas: new product development in industry, perceived quality of the indoor environment, customer satisfaction, and cytological and histological analysis by image processing. A web-based nonparametric combination global ranking software is also described. Designed for practitioners and postgraduate students in statistics and the applied sciences, this application-oriented book offers a practical guide to the reliable global ranking of multivariate items, such as products, processes, and services, in terms of the performance of all investigated products/prototypes.

R for Statistics

Author: Pierre-Andre Cornillon
Publisher: CRC Press
ISBN: 1439881456
Format: PDF, Docs
Download and Read
Although there are currently a wide variety of software packages suitable for the modern statistician, R has the triple advantage of being comprehensive, widespread, and free. Published in 2008, the second edition of Statistiques avec R enjoyed great success as an R guidebook in the French-speaking world. Translated and updated, R for Statistics includes a number of expanded and additional worked examples. Organized into two sections, the book focuses first on the R software, then on the implementation of traditional statistical methods with R. Focusing on the R software, the first section covers: Basic elements of the R software and data processing Clear, concise visualization of results, using simple and complex graphs Programming basics: pre-defined and user-created functions The second section of the book presents R methods for a wide range of traditional statistical data processing techniques, including: Regression methods Analyses of variance and covariance Classification methods Exploratory multivariate analysis Clustering methods Hypothesis tests After a short presentation of the method, the book explicitly details the R command lines and gives commented results. Accessible to novices and experts alike, R for Statistics is a clear and enjoyable resource for any scientist. Datasets and all the results described in this book are available on the book’s webpage at http://www.agrocampus-ouest.fr/math/RforStat