A Handbook of Statistical Analyses using R Third Edition

Author: Torsten Hothorn
Publisher: CRC Press
ISBN: 1482204584
Format: PDF, ePub, Docs
Download and Read
Like the best-selling first two editions, A Handbook of Statistical Analyses using R, Third Edition provides an up-to-date guide to data analysis using the R system for statistical computing. The book explains how to conduct a range of statistical analyses, from simple inference to recursive partitioning to cluster analysis. New to the Third Edition Three new chapters on quantile regression, missing values, and Bayesian inference Extra material in the logistic regression chapter that describes a regression model for ordered categorical response variables Additional exercises More detailed explanations of R code New section in each chapter summarizing the results of the analyses Updated version of the HSAUR package (HSAUR3), which includes some slides that can be used in introductory statistics courses Whether you’re a data analyst, scientist, or student, this handbook shows you how to easily use R to effectively evaluate your data. With numerous real-world examples, it emphasizes the practical application and interpretation of results.

A Handbook of Statistical Analyses Using R Second Edition

Author: Torsten Hothorn
Publisher: CRC Press
ISBN: 1420079336
Format: PDF, ePub
Download and Read
A Proven Guide for Easily Using R to Effectively Analyze Data Like its bestselling predecessor, A Handbook of Statistical Analyses Using R, Second Edition provides a guide to data analysis using the R system for statistical computing. Each chapter includes a brief account of the relevant statistical background, along with appropriate references. New to the Second Edition New chapters on graphical displays, generalized additive models, and simultaneous inference A new section on generalized linear mixed models that completes the discussion on the analysis of longitudinal data where the response variable does not have a normal distribution New examples and additional exercises in several chapters A new version of the HSAUR package (HSAUR2), which is available from CRAN This edition continues to offer straightforward descriptions of how to conduct a range of statistical analyses using R, from simple inference to recursive partitioning to cluster analysis. Focusing on how to use R and interpret the results, it provides students and researchers in many disciplines with a self-contained means of using R to analyze their data.

A Handbook of Statistical Analyses Using S PLUS

Author: Brian S. Everitt
Publisher: CRC Press
ISBN: 9781420057492
Format: PDF
Download and Read
Since the first edition of this book was published, S-PLUS has evolved markedly with new methods of analysis, new graphical procedures, and a convenient graphical user interface (GUI). Today, S-PLUS is the statistical software of choice for many applied researchers in disciplines ranging from finance to medicine. Combining the command line language and GUI of S-PLUS now makes this book even more suitable for inexperienced users, students, and anyone without the time, patience, or background needed to wade through the many more advanced manuals and texts on the market. The second edition of A Handbook of Statistical Analyses Using S-Plus has been completely revised to provide an outstanding introduction to the latest version of this powerful software system. Each chapter focuses on a particular statistical technique, applies it to one or more data sets, and shows how to generate the proposed analyses and graphics using S-PLUS. The author explains S-PLUS functions from both the Windows® and command-line perspectives and clearly demonstrates how to switch between the two. This handbook provides the perfect vehicle for introducing the exciting possibilities S-PLUS, S-PLUS 2000, and S-PLUS 6 hold for data analysis. All of the data sets used in the text, along with script files giving the command language used in each chapter, are available for download from the Internet at http://www.iop.kcl.ac.uk/iop/Departments/BioComp/splus.shtml

Handbook of Statistical Analyses Using Stata Third Edition

Author: Sophia Rabe-Hesketh
Publisher: CRC Press
ISBN: 9781439832356
Format: PDF
Download and Read
The powerful statistical software Stata has streamlined data analysis, interpretation, and presentation for researchers and statisticians around the world. But because of its power and plethora of features, particularly in version 8, Stata manuals are usually quite extensive and detailed. The third edition of the Handbook of Statistical Analyses Using Stata describes the features of Stata version 8 in the same concise, convenient format that made the previous editions so popular. But the revisions updating the handbook to version 8 are not all this edition has to offer: the authors also added important material in three all-new chapters and focused more attention on Stata's improved graphical features. More Highlights of the Third Edition Ö Updates in all chapters that reflect the features of Stata 8 Ö A new chapter on random effects models Ö A new chapter on generalized estimating equations Ö A new chapter on cluster analysis Ö Increased emphasis on diagnostics Each chapter deals with a particular data set, identifies the appropriate analysis for it, and while it includes a brief account of the statistical background of the technique applied, the primary focus remains firmly on using Stata 8 and interpreting its results. Ideal for researchers, statisticians, and students alike, this handbook forms a perfect complement to the Stata manuals, by giving new users a head start on using the program and providing experienced users with a handy quick reference.

A Handbook of Statistical Analyses using SAS Third Edition

Author: Geoff Der
Publisher: CRC Press
ISBN: 1584887850
Format: PDF, ePub
Download and Read
Updated to reflect SAS 9.2, A Handbook of Statistical Analyses using SAS, Third Edition continues to provide a straightforward description of how to conduct various statistical analyses using SAS. Each chapter shows how to use SAS for a particular type of analysis. The authors cover inference, analysis of variance, regression, generalized linear models, longitudinal data, survival analysis, principal components analysis, factor analysis, cluster analysis, discriminant function analysis, and correspondence analysis. They demonstrate the analyses through real-world examples, including methadone maintenance treatment, the relation of cirrhosis deaths to alcohol consumption, a sociological study of children, heart transplant treatment, and crime rate determinants. With the data sets and SAS code available online, this book remains the go-to resource for learning how to use SAS for many kinds of statistical analysis. It serves as a stepping stone to the wider resources available to SAS users.

Handbook of Statistical Analysis and Data Mining Applications

Author: Robert Nisbet
Publisher: Elsevier
ISBN: 0124166458
Format: PDF, Docs
Download and Read
Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. Includes input by practitioners for practitioners Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models Contains practical advice from successful real-world implementations Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications

The R Book

Author: Michael J. Crawley
Publisher: John Wiley & Sons
ISBN: 1118448960
Format: PDF
Download and Read
Hugely successful and popular text presenting an extensive and comprehensive guide for all R users The R language is recognized as one of the most powerful and flexible statistical software packages, enabling users to apply many statistical techniques that would be impossible without such software to help implement such large data sets. R has become an essential tool for understanding and carrying out research. This edition: Features full colour text and extensive graphics throughout. Introduces a clear structure with numbered section headings to help readers locate information more efficiently. Looks at the evolution of R over the past five years. Features a new chapter on Bayesian Analysis and Meta-Analysis. Presents a fully revised and updated bibliography and reference section. Is supported by an accompanying website allowing examples from the text to be run by the user. Praise for the first edition: ‘…if you are an R user or wannabe R user, this text is the one that should be on your shelf. The breadth of topics covered is unsurpassed when it comes to texts on data analysis in R.’ (The American Statistician, August 2008) ‘The High-level software language of R is setting standards in quantitative analysis. And now anybody can get to grips with it thanks to The R Book…’ (Professional Pensions, July 2007)

SAS and R

Author: Ken Kleinman
Publisher: CRC Press
ISBN: 1466584491
Format: PDF, ePub, Mobi
Download and Read
An Up-to-Date, All-in-One Resource for Using SAS and R to Perform Frequent Tasks The first edition of this popular guide provided a path between SAS and R using an easy-to-understand, dictionary-like approach. Retaining the same accessible format, SAS and R: Data Management, Statistical Analysis, and Graphics, Second Edition explains how to easily perform an analytical task in both SAS and R, without having to navigate through the extensive, idiosyncratic, and sometimes unwieldy software documentation. The book covers many common tasks, such as data management, descriptive summaries, inferential procedures, regression analysis, and graphics, along with more complex applications. New to the Second Edition This edition now covers RStudio, a powerful and easy-to-use interface for R. It incorporates a number of additional topics, including using application program interfaces (APIs), accessing data through database management systems, using reproducible analysis tools, and statistical analysis with Markov chain Monte Carlo (MCMC) methods and finite mixture models. It also includes extended examples of simulations and many new examples. Enables Easy Mobility between the Two Systems Through the extensive indexing and cross-referencing, users can directly find and implement the material they need. SAS users can look up tasks in the SAS index and then find the associated R code while R users can benefit from the R index in a similar manner. Numerous example analyses demonstrate the code in action and facilitate further exploration. The datasets and code are available for download on the book’s website.

A Handbook of Statistical Analyses Using SPSS

Author: Sabine Landau
Publisher: Kogan Page Publishers
ISBN: 9781584883692
Format: PDF, Mobi
Download and Read
This text describes how to conduct a range of univariate and multivariate statistical analyses using the latest version of the Statistical Package for the Social Sciences, SPSS 11.

An Introduction to Applied Multivariate Analysis with R

Author: Brian Everitt
Publisher: Springer Science & Business Media
ISBN: 9781441996503
Format: PDF, Mobi
Download and Read
The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set. These units might be human subjects, archaeological artifacts, countries, or a vast variety of other things. In a few cases, it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or another method of multivariate analysis might be helpful, and it is with such methods that this book is largely concerned. Multivariate analysis includes methods both for describing and exploring such data and for making formal inferences about them. The aim of all the techniques is, in general sense, to display or extract the signal in the data in the presence of noise and to find out what the data show us in the midst of their apparent chaos. An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data.