Publisher: Outskirts Press

ISBN: 1478765224

Pages: 284

Year: 2015-11-18

View: 359

Read: 427

The title of this book is intended to be more of a challenge than a promise. No one can promise you that you will learn differential equations in 24 hours. That is up to you. What this book does is it makes it possible to learn basic differential equations in the minimum amount of time needed. It has a concise style of presentation and the right number of exercises and examples-not too many, not too few. All of the solutions to all of the exercises are presented in detail in Appendix 1. This allows reinforcement learning and verification of success. Biographical sketches of important mathematicians are included to provide additional motivation; however, they can be skipped in the interest of further time savings. The material which can be skipped appears in italics. The content taught here is equivalent to the material presented in the junior-level course in differential equations that the author teaches at University of Colorado Denver. It grew out of his earlier book, Shortcut to Ordinary Differential Equations. The present book, expanded slightly and equipped with all of the solutions, covers basically the same topics that were taught in a junior-level course in differential equations that the author took at Indiana University-Purdue University Indianapolis.

Publisher: CRC Press

ISBN: 1498702600

Pages: 764

Year: 2016-11-17

View: 204

Read: 605

Fads are as common in mathematics as in any other human activity, and it is always difficult to separate the enduring from the ephemeral in the achievements of one’s own time. An unfortunate effect of the predominance of fads is that if a student doesn’t learn about such worthwhile topics as the wave equation, Gauss’s hypergeometric function, the gamma function, and the basic problems of the calculus of variations—among others—as an undergraduate, then he/she is unlikely to do so later. The natural place for an informal acquaintance with such ideas is a leisurely introductory course on differential equations. Specially designed for just such a course, Differential Equations with Applications and Historical Notes takes great pleasure in the journey into the world of differential equations and their wide range of applications. The author—a highly respected educator—advocates a careful approach, using explicit explanation to ensure students fully comprehend the subject matter. With an emphasis on modeling and applications, the long-awaited Third Edition of this classic textbook presents a substantial new section on Gauss’s bell curve and improves coverage of Fourier analysis, numerical methods, and linear algebra. Relating the development of mathematics to human activity—i.e., identifying why and how mathematics is used—the text includes a wealth of unique examples and exercises, as well as the author’s distinctive historical notes, throughout. Provides an ideal text for a one- or two-semester introductory course on differential equations Emphasizes modeling and applications Presents a substantial new section on Gauss’s bell curve Improves coverage of Fourier analysis, numerical methods, and linear algebra Relates the development of mathematics to human activity—i.e., identifying why and how mathematics is used Includes a wealth of unique examples and exercises, as well as the author’s distinctive historical notes, throughout Uses explicit explanation to ensure students fully comprehend the subject matter Outstanding Academic Title of the Year, Choice magazine, American Library Association.

Publisher: CRC Press

ISBN: 1498702627

Pages: 764

Year: 2016-11-17

View: 240

Read: 370

Fads are as common in mathematics as in any other human activity, and it is always difficult to separate the enduring from the ephemeral in the achievements of one’s own time. An unfortunate effect of the predominance of fads is that if a student doesn’t learn about such worthwhile topics as the wave equation, Gauss’s hypergeometric function, the gamma function, and the basic problems of the calculus of variations—among others—as an undergraduate, then he/she is unlikely to do so later. The natural place for an informal acquaintance with such ideas is a leisurely introductory course on differential equations. Specially designed for just such a course, Differential Equations with Applications and Historical Notes takes great pleasure in the journey into the world of differential equations and their wide range of applications. The author—a highly respected educator—advocates a careful approach, using explicit explanation to ensure students fully comprehend the subject matter. With an emphasis on modeling and applications, the long-awaited Third Edition of this classic textbook presents a substantial new section on Gauss’s bell curve and improves coverage of Fourier analysis, numerical methods, and linear algebra. Relating the development of mathematics to human activity—i.e., identifying why and how mathematics is used—the text includes a wealth of unique examples and exercises, as well as the author’s distinctive historical notes, throughout. Provides an ideal text for a one- or two-semester introductory course on differential equations Emphasizes modeling and applications Presents a substantial new section on Gauss’s bell curve Improves coverage of Fourier analysis, numerical methods, and linear algebra Relates the development of mathematics to human activity—i.e., identifying why and how mathematics is used Includes a wealth of unique examples and exercises, as well as the author’s distinctive historical notes, throughout Uses explicit explanation to ensure students fully comprehend the subject matter Outstanding Academic Title of the Year, Choice magazine, American Library Association.

Publisher: Prentice Hall

ISBN:

Pages: 400

Year: 1979

View: 1257

Read: 668

Publisher: Courier Corporation

ISBN: 0486672603

Pages: 278

Year: 1961

View: 1314

Read: 760

Comprehensive study focuses on use of calculus of finite differences as an approximation method for solving troublesome differential equations. Elementary difference operations; interpolation and extrapolation; modes of expansion of the solutions of nonlinear equations, applications of difference equations, difference equations associated with functions of two variables, more. Exercises with answers. 1961 edition.

Publisher: Courier Corporation

ISBN: 0486649407

Pages: 808

Year: 1963

View: 1150

Read: 1294

Skillfully organized introductory text examines origin of differential equations, then defines basic terms and outlines the general solution of a differential equation. Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.

Publisher: Cengage Learning

ISBN: 1111827052

Pages: 464

Year: 2012-03-15

View: 1170

Read: 1276

A FIRST COURSE IN DIFFERENTIAL EQUATIONS WITH MODELING APPLICATIONS, 10th Edition strikes a balance between the analytical, qualitative, and quantitative approaches to the study of differential equations. This proven and accessible text speaks to beginning engineering and math students through a wealth of pedagogical aids, including an abundance of examples, explanations, Remarks boxes, definitions, and group projects. Written in a straightforward, readable, and helpful style, this book provides a thorough treatment of boundary-value problems and partial differential equations. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Publisher: Cengage Learning

ISBN: 1305965795

Pages: 50

Year: 2016-12-05

View: 321

Read: 864

DIFFERENTIAL EQUATIONS WITH BOUNDARY-VALUE PROBLEMS, 9th Edition, strikes a balance between the analytical, qualitative, and quantitative approaches to the study of Differential Equations. This proven text speaks to students of varied majors through a wealth of pedagogical aids, including an abundance of examples, explanations, Remarks boxes, and definitions. Written in a straightforward, readable, and helpful style, the book provides a thorough overview of the topics typically taught in a first course in Differential Equations as well as an introduction to boundary-value problems and partial Differential Equations. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Publisher:

ISBN:

Pages: 496

Year: 1865

View: 831

Read: 562

Publisher: Courier Corporation

ISBN: 0486158217

Pages: 576

Year: 2012-04-27

View: 157

Read: 175

Among the topics covered in this classic treatment are linear differential equations; solution in an infinite form; solution by definite integrals; algebraic theory; Sturmian theory and its later developments; much more. "Highly recommended" — Electronics Industries.

Publisher: Courier Dover Publications

ISBN: 048680707X

Pages: 608

Year: 2016-08-17

View: 477

Read: 268

This classic offers a comprehensive logical treatment that concentrates on theory rather than on techniques and applications, providing students with a substantial base for graduate work in physics. 1940 edition.

Publisher: SIAM

ISBN: 1611975166

Pages: 335

Year: 2017-12-21

View: 448

Read: 1331

Exploring ODEs is a textbook of ordinary differential equations for advanced undergraduates, graduate students, scientists, and engineers. It is unlike other books in this field in that each concept is illustrated numerically via a few lines of Chebfun code. There are about 400 computer-generated figures in all, and Appendix B presents 100 more examples as templates for further exploration.

Publisher: Cambridge University Press

ISBN: 1139468472

Pages:

Year: 2008-01-10

View: 480

Read: 694

Gauss's law for electric fields, Gauss's law for magnetic fields, Faraday's law, and the Ampere–Maxwell law are four of the most influential equations in science. In this guide for students, each equation is the subject of an entire chapter, with detailed, plain-language explanations of the physical meaning of each symbol in the equation, for both the integral and differential forms. The final chapter shows how Maxwell's equations may be combined to produce the wave equation, the basis for the electromagnetic theory of light. This book is a wonderful resource for undergraduate and graduate courses in electromagnetism and electromagnetics. A website hosted by the author at www.cambridge.org/9780521701471 contains interactive solutions to every problem in the text as well as audio podcasts to walk students through each chapter.

Publisher:

ISBN: 1432712004

Pages: 184

Year: 2009-02

View: 448

Read: 431

This book consists of twenty articles, each teaching a single technique. Each article contains examples and exercises with answers to provide the immediate feedback needed to reinforce your learning. The book serves as a great introduction to differential equations for those who may be new to the subject or it can be used as a supplement for those who are taking a course out of a different book. It's also perfect as a review for those who have taken a course in the past and need to refresh their skills.

Publisher: CRC Press

ISBN: 1482247046

Pages: 557

Year: 2014-11-13

View: 1101

Read: 1158

"Krantz is a very prolific writer. He ... creates excellent examples and problem sets." —Albert Boggess, Professor and Director of the School of Mathematics and Statistical Sciences, Arizona State University, Tempe, USA Designed for a one- or two-semester undergraduate course, Differential Equations: Theory, Technique and Practice, Second Edition educates a new generation of mathematical scientists and engineers on differential equations. This edition continues to emphasize examples and mathematical modeling as well as promote analytical thinking to help students in future studies. New to the Second Edition Improved exercise sets and examples Reorganized material on numerical techniques Enriched presentation of predator-prey problems Updated material on nonlinear differential equations and dynamical systems A new appendix that reviews linear algebra In each chapter, lively historical notes and mathematical nuggets enhance students’ reading experience by offering perspectives on the lives of significant contributors to the discipline. "Anatomy of an Application" sections highlight rich applications from engineering, physics, and applied science. Problems for review and discovery also give students some open-ended material for exploration and further learning.